Mordell-Weil lattices and toric decompositions of plane curves
نویسندگان
چکیده
منابع مشابه
Singular Plane Curves and Mordell-Weil Groups of Jacobians
This note explores the method of A. Néron [5] for constructing elliptic curves of (fairly) high rank over Q . Néron’s basic idea is very simple: although the moduli space of elliptic curves is only 1-dimensional, the vector space of homogeneous cubic polynomials in three variables is 10-dimensional. Therefore, one can construct elliptic curves which pass through any given 9 rational points. Wit...
متن کاملRigid Lattices Are Mordell-weil
We say a lattice Λ is rigid if it its isometry group acts irreducibly on its ambient Euclidean space. We say Λ is Mordell-Weil if there exists an abelian variety A over a number field K such that A(K)/A(K)tor, regarded as a lattice by means of its height pairing, contains at least one copy of Λ. We prove that every rigid lattice is Mordell-Weil. In particular, we show that the Leech lattice can...
متن کاملElliptic Curves Group Law and Mordell-weil
This paper assumes no background on elliptic curves and culminates with a proof of the Mordell-Weil theorem. The Riemann-Roch and Dirichlet unit theorem are recalled but used without proof, but everything else is self-contained. After some elementary properties of elliptic curves are given, the group structure is explored in detail.
متن کاملMordell-Weil Lattices in Characteristic 2, III: A Mordell-Weil Lattice of Rank 128
CONTENTS We analyze the 128-dimensional Mordell-Weil lattice of a cer1 . Introduction j -a jn elliptic curve over the rational function field k(t)f where k is 2. Statement of Results a finite field of 2 elements. By proving that the elliptic curve 3. Proof of Rank, Discriminant and Tate-Safarevic Group has trivial Tate-Safarevic group and nonzero rational points of 4. Proof of Minimal Norm, Den...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2016
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-016-1399-9